

Synapse Bootcamp - Module 7

Pre-Storm Background - Answer Key
Pre-Storm Background - Answer Key​ 1
Answer Key​ 2

Form Categories​ 2
Exercise 1 Answer​ 2

Form and Property Namespaces​ 7
Exercise 2 Answer​ 7
Exercise 3 Answer​ 8
Exercise 4 Answer​ 9

Type Enforcement​ 10
Exercise 5 Answer​ 10

Type-Specific Behavior​ 15
Exercise 6 Answer​ 15
Exercise 7 Answer​ 21

© 2025 The Vertex Project, LLC 1

Answer Key

Form Categories

Exercise 1 Answer

Objectives:
●​ Use Data Model Explorer to examine the data model in more detail.
●​ Determine "what" is being modeled and understand what a form represents.

Question 1: What does the file:path form represent?

●​ A file:path form represents "a normalized file path". That is, the path used to
reference a file on a file system:​

 ​
​
A file:path can be as simple as a file name by itself, or may include directory and
/ or drive paths.

All of these can be file:path nodes:

cmd.exe
/home/bob/Documents/myfile.txt
C:\Windows\System32\drivers\acpi.sys

​
Normalized means that Synapse standardizes the way it stores and represents a
file path. In Synapse:

●​ all paths are converted to lowercase, and
●​ all directory separators are converted to forward slashes:

/home/bob/documents/myfile.txt​
c:/windows/system32/drivers/acpi.sys

​

© 2025 The Vertex Project, LLC 2

Note: You can enter and query file paths however you like (upper case, mixed
case, forward slashes or backslashes). Synapse recognizes all of these formats
and handles the normalization for you!

Question 2: What is the form's primary property value? What would an example look like?​

●​ The primary property value of a file:path node is the file path. You can see this in
the "example" in Data Model Explorer:​

You can also use the Lift in Research Tool button to view example file:path
nodes:​

A file:path form is a "simple" form (i.e., where the primary property value is
the "thing" itself).

Question 3: Is a file:path an object, a relationship, or an event?

●​ A file:path is an object. It represents a file and / or directory path.​

"Simple" forms often represent objects.

Question 4: What does the file:filepath form represent?

© 2025 The Vertex Project, LLC 3

●​ A file:filepath form represents "the fused knowledge of the association of a

file:bytes node and a file:path":​

​

In simple terms: a file:filepath node links a file (file:bytes) to a path
(file:path) where the file was seen. This can represent:

●​ A file (set of bytes) that was observed with a specific file name (e.g.,
svchost.exe or 20240412_invoice.pdf); or

●​ A file (set of bytes) that was observed in a specific location (e.g.,
c:\windows\temp\download.exe or
/home/jsmith/Documents/myfile).

Question 5: What is the form's primary property value? What would an example look like?

●​ The primary property value of a file:filepath node is the combination of the
file (file:bytes) and its path (file:path):

This is represented by the example primary property format shown above:​
(file[file:bytes], path[file:path])

© 2025 The Vertex Project, LLC 4

You can view example file:filepath nodes using the Lift in Research Tool
button:​

A file:filepath is a comp (composite) form. Composite forms have primary
properties made up of more than one value (usually two).

Question 6: Is a file:filepath an object, a relationship, or an event?

●​ A file:filepath is a relationship between a file and its observed file system
path or file name.​

Composite forms often represent relationships. The primary property consists of
the objects (usually two) that share the relationship.

Question 7: What does the it:exec:file:add form represent?

●​ An it:exec:file:add form represents "an instance of a host adding a file to a
filesystem":​

​
​
In simple terms: it represents activity that occurred on a host at a specific time
("instance"). The activity was a file added to the file system - for example, due to the
execution ("exec") of a program.​

© 2025 The Vertex Project, LLC 5

A "file add" may occur during activity such as:
●​ Installation of new software
●​ Creating a new document
●​ Downloading and saving a file

​
Question 8: What is the form's primary property value? What would an example look like?

●​ The primary property value of an it:exec:file:add node is a globally unique
identifier, or guid:

You can view example it:exec:file:add nodes using the Lift in Research Tool
button:​

An it:exec:file:add form is a guid form, where the primary property is a
128-bit value (represented in hexadecimal - it looks like an MD5 hash, although it
is not an MD5).​
​
Guid forms are used when no single value (or reasonable set of values) are
guaranteed to make the form unique.

A guid (128-bit value) is large enough to ensure that each guid form is unique
within a Cortex. We can record as much (or as little) information about the node
(by setting properties) as we choose.

Question 9: Is an it:exec:file:add form an object, a relationship, or an event?​

© 2025 The Vertex Project, LLC 6

●​ An it:exec:file:add is an event. It represents a specific action (i.e., adding a file

to a host filesystem) that occurred at a specific point in time.​

In Synapse, forms that represent events will often have a :time property to
show that the node represents a "point in time" observation or occurrence.​
​
Guid forms are often used to represent events or other "instance" data.

Form and Property Namespaces

Exercise 2 Answer

Objectives:
●​ Use the Data Model Explorer to view the subset of forms within a particular

namespace.
●​ See examples of how forms in the data model may be grouped together.
●​ Understand when a "subcategory" may be used to group related forms

within a larger namespace.

Question 1: What types of things (forms, objects) are in the inet: category?

●​ The inet: (Internet) portion of the Synapse data model includes forms related to
networking, including:

Kind of Data Example Synapse Forms

Network addresses​
​
Network address ranges

inet:ipv6​
inet:mac​
inet:cidr4​
inet:asnet6

Clients and servers inet:client​
inet:server

Server infrastructure and properties inet:tls:servercert
inet:tls:clientcert
inet:ssl:cert​
inet:banner

Network communications and actions inet:flow​
inet:download

© 2025 The Vertex Project, LLC 7

Kind of Data Example Synapse Forms

Network registration (whois) data inet:whois:rec​
inet:whois:iprec

Network protocols inet:dns:*​
inet:http:*

Network-based services and related
activity

inet:service:account
inet:service:channel
inet:service:group
inet:service:message
inet:service:platform

Network-based accounts and related
activity

inet:web:acct​
inet:web:group​
inet:web:post

Note: the inet:service:* forms were introduced in June 2024 to update (and
eventually replace) the inet:web:* forms. You may see either or both kinds of
nodes in Synapse during the transition from the older model elements to the
current ones.

Similarly, inet:tls:servercert and inet:tls:clientcert were introduced
in April 2024 to update (and eventually replace) the inet:ssl:cert form.

Question 2: What notable "subcategories" can you identify in the inet: category?

●​ There are several "sub-categories" in the inet:* category. These include:
○​ Specific protocols (inet:dns:*, inet:http:*)
○​ Email messages / communications (inet:email:*),
○​ Registration data (inet:whois:*)

…to name a few.

© 2025 The Vertex Project, LLC 8

Exercise 3 Answer

Objectives:
●​ Understand the difference between a form name / namespace and a

property name / namespace.
●​ Identify both the full and relative names of a property.

Question 1: What is the full property name of the "registrant" property?​

●​ The full property name is:

inet:whois:rec:registrant

The full property name consists of the form (inet:whois:rec) and property
(:registrant) names together.

​
Question 2: What is the relative property name of the "registrant" property?

●​ The relative property name is:

:registrant

The relative property name consists of only the property name (and its leading
character - either colon (:), dot (.), or colon underscore (:_)) relative to the
form name.

Exercise 4 Answer

Objectives:
●​ Understand the difference between a form name / namespace and a

property name / namespace.
●​ Identify both the full and relative names of a property.

Question 1: What is the full property name of the PE import hash (imphash) property?

●​ The full property name is:

file:bytes:mime:pe:imphash

© 2025 The Vertex Project, LLC 9

The full property name consists of the form (file:bytes) and property
(:mime:pe:imphash) names together.

​
Question 2: What is the relative property name of this property?

●​ The relative property name is:

:mime:pe:imphash

The relative property name consists of just the property name (and its leading
character - either colon (:), dot (.), or colon underscore (:_)) relative to the
form name.

In this case, the property name for the PE import hash is nested within a few
"subcategories" that cluster related properties on a file (file:bytes) node.

The :mime "subcategory" holds properties related to file MIME types. The :pe
"subcategory" holds properties specific to PE (portable executable) files.

The relative property name must include these "subcategories" - everything
except the form name (file:bytes). You cannot simply use :imphash.

Type Enforcement

Exercise 5 Answer

Objective:
●​ Observe how Synapse helps to ensure data is consistent and correct through

normalization and type enforcement.

Question 1: What happens when you click the Add Node button? Did Synapse create the
URL node?

© 2025 The Vertex Project, LLC 10

●​ Synapse gives you an Invalid/missing protocol error and does not create the

node:​

Before creating any node, Synapse checks its type enforcement rules. One rule
for URLs is that they must have a protocol header (such as http:// or file://).

Question 2: What is the error message in the Console Tool? What does it mean?

●​ The Console Tool displays the full error message:

​

BadTypeValu refers to Synapse's type enforcement - the rules Synapse follows to
make sure that data of a particular type (in this case, inet:url) is "well formed"
for the kind of data you're entering.

In this case the value you entered (vertex.link) is bad (invalid) for the type of
node you're creating (an inet:url).​
​
Synapse also provides a hint as to what is wrong with your data - in this case, there
is no protocol header (such as ftp://).

Question 3: Did Synapse create the URL node? If so, did Synapse modify the data in any
way?​

© 2025 The Vertex Project, LLC 11

●​ Synapse created the inet:url node, but changed the URL to lowercase:​

Synapse normalizes the URL by converting it to lowercase. By converting to
lowercase, Synapse ensures that you don't end up with more than one node for
the same URL where the only difference is the case used.

Normalizing data is not the same as type enforcement. Converting to lowercase
for consistency has nothing to do with making sure a URL looks like a URL.

Normalizing data makes Synapse life simpler for you because URLs are always
stored the same way - in lowercase. If you are writing a Storm query or searching
for a node, you do not have to worry about matching the exact case of the URL!

​
Question 4: Did Synapse create the inet:url node? If so, what properties did Synapse
set on the node?

© 2025 The Vertex Project, LLC 12

●​ Synapse created the node. The inet:url node has the following properties:​

Even though this is not a "real" URL, it passes Synapse's type enforcement
checks:

●​ It has a protocol string - woot://
●​ It has a valid host (FQDN / IPv4 / IPv6) - vertex.link
●​ It has a valid URL path - /some/fake/path/hahaha.asp

Type enforcement tries to be "restrictive enough" to catch common errors, but
not so restrictive that it prevents you from creating valid nodes. (This is one
reason Lookup mode will prompt you before creating nodes - it gives you a
chance to review and remove any "bad" nodes before creating anything.)​
​
Type enforcement will not catch all bad data. But it will catch many
inconsistencies ("hey you forgot the FQDN in your URL") or copy/paste errors
("looks like you tried to make a URL out of an email address by mistake").

Question 5: Did Synapse allow you to create the inet:url node? If so, what properties
did Synapse set on the node?

© 2025 The Vertex Project, LLC 13

●​ Synapse created the inet:url node and set the following properties:​

Synapse is able to parse out the different parts of the URL into various secondary
properties. In this URL, Synapse recognizes (and models!) the protocol,
credentials (username and password), FQDN / hostname, port number, file path,
and parameters used in the query. Yay Synapse!​
​
This is the positive side of type enforcement. Type enforcement can help
prevent you from creating nodes with bad or malformed data. In addition, when
data is well-formed, Synapse can automatically extract and represent lots of
useful things for you!

© 2025 The Vertex Project, LLC 14

Type-Specific Behavior

Exercise 6 Answer

Objective:
●​ Observe one example of type-specific behavior implemented in Synapse to

simplify working with certain kinds of data (in this case, IPv4 addresses)

Question 1: in each case, using Lookup mode, what (if anything) does Synapse display?

●​ For 58.247.237.192, Synapse displays the node for this IPv4 address:​

​

© 2025 The Vertex Project, LLC 15

●​ For 0x3AF7EDC0, Synapse does not display anything:​

​
​
A pop-up ("toast") message confirms that no nodes were returned:​

© 2025 The Vertex Project, LLC 16

●​ For 58.247.237.0/24, Synapse displays the single IPv4 58.247.237.0:​

​

●​ For 58.247.237.56-58.247.237.64, Synapse displays the IPv4 58.247.237.56:​

​

© 2025 The Vertex Project, LLC 17

In Lookup mode, Synapse can only recognize individual IPv4 addresses in
dotted-decimal format. Lookup mode does not understand other formats (like
hexadecimal) and cannot recognize things like CIDR format or ranges.​

Lookup mode uses logic (regular expressions) to identify common values such as
IPv4s or MD5 hashes. In other words, Synapse makes a best guess at "what you
mean" based on the data you enter. In Lookup mode, you do not tell Synapse
that the data you paste in is an IPv4 address - Synapse has to try to figure that
out.

The forms Synapse can recognize must be narrowly defined. In other words,
Synapse can only go so far in trying to "guess what you mean" when you enter
values in these modes.​
​
For example, in the example above the hexadecimal string represents an IPv4
address. In other circumstances it could be a string or a memory address.

Question 2: In each case, using Storm mode, what (if anything) does Synapse display?

●​ For inet:ipv4=58.247.237.192, Synapse displays the single IPv4 address:​

​

© 2025 The Vertex Project, LLC 18

●​ For inet:ipv4=0x3AF7EDC0, Synapse recognizes the hexadecimal format and

shows you the associated IPv4:​

●​ For inet:ipv4=58.247.237.0/24, Synapse recognizes CIDR notation as a valid
way to specify a range of IPv4 addresses. Synapse shows you all IPv4s in that
range that exist within Synapse:​

​

© 2025 The Vertex Project, LLC 19

●​ For inet:ipv4=58.247.237.56-58.247.237.64, Synapse recognizes this as

another way to specify a range of IPv4s, and shows you all IPv4s in that range
that exist within Synapse:​

In Storm mode, you include the form (inet:ipv4) as part of your query.

By using the form, you "tell" Synapse what kind of data you are asking about.
Synapse "knows" you are entering IPv4 addresses; so Synapse can use
type-specific behavior to do things like recognize alternate formats for IPv4s
(such as hexadecimal or CIDR notation).

One way that type-specific behavior makes things easier is by allowing you to
input data in a variety of formats. Synapse understands different ways to
represent data. You can enter the data as it appears - you do not need to
manually convert it.​
​
In the case of inet:ipv4 addresses, Synapse's ability to recognize ranges and
CIDR notation allows you to easily specify sets of IPv4 addresses without having
to list them individually.

A lot of Synapse's type-specific behavior is designed for very specific (but
helpful) use cases. You do not need to memorize these use cases, but you should
know where to find them when you need them! They are described in the Storm
Reference of the Synapse User Guide under Type-Specific Behavior.

© 2025 The Vertex Project, LLC 20

https://synapse.docs.vertex.link/en/latest/synapse/userguides/storm_ref_type_specific.html

Exercise 7 Answer

Objective:
●​ Use the Data Model Explorer to identify nodes that are "connected" by

properties that share the same type (i.e., forms that Synapse can readily
Explore or pivot between by using type awareness).

Question 1: Based on the information in Data Model Explorer, can you navigate (i.e.,
using the Explore button, or a Storm query) between a crypto:x509:cert node and the
SHA1 fingerprint (hash:sha1) of the certificate?

●​ Yes.​
​
The crypto:x509:cert node's :sha1 property represents its SHA1 fingerprint.
You can navigate from the certificate (crypto:x509:cert) to the hash:sha1 node

© 2025 The Vertex Project, LLC 21

of its fingerprint using the :sha1 property:​

Question 2: Can you navigate from a crypto:x509:cert node to nodes that show the
certificate was used to sign a particular file?

●​ Yes. ​
​
A crypto:x509:signedfile node is a "relationship" node that links a file
(file:bytes node) to the certificate used to sign the file. You can navigate from
the certificate (crypto:x509:cert) to any crypto:x509:signedfile nodes

© 2025 The Vertex Project, LLC 22

using their :cert property:​

© 2025 The Vertex Project, LLC 23

	Synapse Bootcamp - Module 7
	Pre-Storm Background - Answer Key
	
	
	Answer Key
	Form Categories
	Exercise 1 Answer

	Form and Property Namespaces
	Exercise 2 Answer
	Exercise 3 Answer
	Exercise 4 Answer

	Type Enforcement
	Exercise 5 Answer

	Type-Specific Behavior
	Exercise 6 Answer
	Exercise 7 Answer

